Problem 10.39

This is a little bit obscurely presented, but the sketch more or less gives the information needed to do this problem. Again, it is a rotational N.S.L. problem.

$$\vec{r} \times \vec{F} = |\vec{F}| r_{\perp}$$

= (.800 N)(30.0 m)
= 24.0 N•m

b.) What is the plane's angular acceleration?

Treating the plane like a point mass so it's moment of inertia is mr^2 , we can write:

$$\vec{r} \times \vec{F} = I\alpha$$

$$\Rightarrow \alpha = \frac{\vec{r} \times \vec{F}}{(mr^2)}$$

$$= \frac{(24.0 \text{ N} \cdot \text{m})}{((.750 \text{ kg})(30.0 \text{ m})^2)}$$

$$= 3.56 \times 10^{-2} \text{ rad/s}^2$$
1)

c.) What is the *translational acceleration* of the plane?

$$a = r\alpha$$

= (30.0 m/rad)(3.56x10⁻² rad/s²)
= 1.07 m/s²

